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We study the fate of the Onsage~Casimir reciprocity relations for a continuous 
system when some of its variables are eliminated adiabatically. Just as for dis- 
crete systems, deviations appear in correction terms to the reduced evolution 
equation that are of higher order in the time scale ratio. The deviations are not 
removed by including correction terms to the coarse-grained thermodynamic 
potential. However, via a reformulation of the theory, in which the central role 
of the thermodynamic potential is taken over by an associated Lagrangian-type 
expression, we arrive at a modified form of the Onsager Casimir relations that 
survives the adiabatic elimination procedure. There is a simple relation between 
the time evolution of the redefined thermodynamic forces and that of the basic 
thermodynamic variables; this relation also survives the adiabatic elimination. 
The formalism is illustrated by explicit calculations for the Klein-Kramers 
equation, which describes the phase space distribution of Brownian particles, 
and for the corrected Smoluchowski equation derived from it by adiabatic 
elimination of the velocity variable. The symmetry relation for the latter leads to 
a simple proof that the reality of the eigenvalues of the simple Smoluchowski 
equation is not destroyed by the addition of higher order corrections, at least 
not within the framework of a formal perturbation expansion in the time scale 
ratio. 

KEY WORDS: Onsager-Casimir relations; adiabatic elimination; Chapman- 
Enskog procedure; Brownian motion; Kramers equation; Smolnchowski 
equation; thermodynamic forces. 

1. I N T R O D U C T I O N  

The Onsager-Casimir reciprocity relations (1-4) express an important 
consequence of microscopic time-reversal invariance for the relaxation of 
macroscopic quantities in the linear regime close to thermodynamic 
equilibrium. The proof of these relations involves the assumption that the 
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correlation functions for the thermal fluctuations of macroscopic quantities 
decay according to the macroscopic relaxation equations. Since the very 
concept of a closed system of equations for the macroscopic quantities 
alone contains approximations, this so-called regression hypothesis, and 
hence the Onsager-Casimir relations, can also have only approximate 
validity, though the approximation is in general an excellent one. 

Closed equations for the macroscopic variables, which are almost by 
definition slowly varying ones, can be obtained by adiabatic elimination of 
all faster variables (see Ref. 5 for a survey). The equations thus derived are 
valid only asymptotically for times large compared to the fast frequencies 
and relaxation times. The initial conditions to be used with these equations 
are not simply the values of the macroscopic quantities in the microscopic 
initial state (or, for correlation functions, the equal-time correlation 
functions); there are correction terms of higher order in the time scale 
ratio. These so-called initial slip effects (6 8),2 are ultimately responsible 
for violations of the Onsager-Casimir relations, as was shown by 
Geigenmfiller eta/ .  (9) for systems with a finite number of macroscopic 
variables. In the present paper we shall extend the treatment of Ref. 9 to 
the case where the macroscopic quantities are fields, i.e., functions of space. 

An explicit, systematic elimination of fast variables is possible only 
when the dynamics on the fast time scale is sufficiently simple. Hence, 
merely formal results can be expected from elimination schemes starting 
directly from the microscopic equations. More progress is possible when an 
intermediate, or mesoscopic, level is interposed. Then the transition from 
the microscopic to the mesoscopic level may still involve uncontrollable 
approximations, but the transition from the mesoscopic to the macroscopic 
one can be performed in a systematic way (at least for sufficiently simple 
mesoscopic equations) by means of the Chapman-Enskog algorithm. (6 8) 
The most important example of a tractable mesoscopic equation is the 
Boltzmann equation, for which the Chapman-Enskog method successively 
yields the Euler, Navier-Stokes, and Burnett equations. An even simpler 
case is the Klein-Kramers equation for the phase space distribution of a 
Brownian particle, from which the Smoluchowski equation and successive 
corrections to it are obtained. (78) The analogy with the finite-dimensional 
case (9) leads one to expect deviations from Onsager-Casimir symmetry in 
the higher order corrections obtained by the Chapman Enskog method. 

In continuous systems the familiar Onsager symmetry properties of the 
matrix connecting the fluxes (i.e., the time derivatives of the macroscopic 
quantities) with the thermodynamic forces (i.e., the derivatives of the 
thermodynamic potential) translate into Hermiticity properties of linear 

2 See Ref. 6 for a modern treatment and references to the original literature. 
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operators, or operator-valued matrices. (The conventional Onsager 
relations for continuous systems can be deduced from these operator 
relations by specializing to simple geometries and boundary conditions, as 
is shown in detail, e.g., in Chapter VII of Ref. 3). In Section 2 we formulate 
the Hermiticity requirements explicitly. We then show that they are fulfilled 
by the operator occurring in the Klein-Kramers equation, or rather in a 
system of coupled moment equations equivalent to it. Analogous properties 
hold for the operator occurring in the Smoluchowski equation, as well as 
for the first correction to it, but not for the second correction term, as is 
shown in Section 3. 

This violation of the Onsager property is not too surprising: it is 
certainly inconsistent to consider higher order corrections to the time 
evolution of the macroscopic quantities, but not to the free energy of the 
system, and hence to the expressions for the thermodynamic forces. 
However, correcting for this omission does not restore the Onsager 
property, as is also shown explicitly in Section 3. 

The Onsager-Casimir symmetry relations can nevertheless be 
salvaged, but this requires a different definition of the thermodynamic for- 
ces: instead of the (functional) derivatives of the thermodynamic potential, 
in our case the free energy, one has to take those of an associated "ther- 
modynamic Lagrangian," defined as the difference between the free energy 
contributions from macroscopic variables odd under time reversal and 
those from variables even under time reversal. This construction is carried 
out in Section4. The distinct role played by the thermodynamic 
Lagrangian is closely related to a property noted by Felderhof and 
Titulaer(l~ unlike the thermodynamic potential itself, the Lagrangian can 
be written as a sum of contributions from each of the normal modes of the 
evolution operator. In particular, there are no interference terms between 
normal, or Chapman-Enskog type, solutions of the mesoscopic equation 
on the one hand, and the rapidly decaying solutions that lead to the initial 
slip on the other hand. In the second half of Section 4 we show that the 
modified Onsager-Casimir relations allow one to draw much the same type 
of conclusions that are usually drawn from the classical ones. In particular, 
they provide a simple relation between the left and right eigenfunctions of 
the corrected Smoluchowski operator (cf. Refs. 10 and 11). They also lead 
to a formal proof that the eigenvalues of the corrected Smoluchowski 
operator become real for large enough friction. 

In the concluding section we summarize our main conclusions. We 
also comment briefly on the connection to recent work by Gouyet (12) on 
the corrected Smoluchowski operator, and by Ku~6er (13) on Onsager 
relations between transport coefficients appearing in the linearized Burnett 
equations. 
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Although the formalism developed in the paper is applicable to a 
broad class of linear mesoscopic equations, explicit calculations are presen- 
ted only for the one-dimensional Klein-Kramers equation, which provides 
the simplest nontrivial example. This was done to enable us to concentrate 
on the conceptual issues involved. We intend to discuss some similar 
questions for the linearized Boltzmann equation in a subsequent paper. 

2. T H E  O N S A G E R - C A S I M I R  S Y M M E T R Y  OF T H E  
K L E I N - K R A M E R S  E Q U A T I O N  

The systems we shall deal with in this paper consist of noninteracting 
particles of mass m moving under the influence of a potential ~b(r). On the 
mesoscopic level the system is described by a distribution function P(u, r, t) 
of particle velocities and positions, normalized to unity, which obeys a 
kinetic equation of the type 

OP(u, r, t) c~P 1 Oqo ~p 
- u. +TcgP (2.1) 

~t ~ - r + m  ~r ~u 

Here ~ is an operator acting on the velocity variables only. Moreover, we 
require that it satisfies the (extended) detailed balance condition ~14~ relative 
to a Maxwellian velocity distribution at a temperature T=(kfl) l; the 
parameter 7 is a bookkeeping parameter at this stage. In all explicit 
calculations we shall use the one-dimensional version of (2.1) and choose 
for cg the expression 

1(0: e ) 
(2.2) 

For this choice of cg, (2.1) describes an assembly of Brownian particles 
and is called the Klein-Kramers equation, while 7 denotes the friction 
coefficient. 

The distribution function P(u, x, t) itself is not a suitable variable for 
our subsequent analysis, since it has no definite parity under the time- 
reversal transformation u --* -u .  We therefore decompose it with respect to 
a complete set of functions ~bk(u) that do have definite parity: 

P(N, x, t) = Peq(U, x) + ~ ak(x , t) ~)k(bt) 
k=0 

(2.3) 

where Peq(U, x) is the normalized equilibrium distribution. It is convenient 
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to choose for the Ck(u) the eigenfunctions of (2.2) with eigenvalues - k .  As 
was shown in Ref. 7, these are 

Ck(u) - k! (4~)i/2(2rn/~) (k 11/2 g~ rnl3 u e mpu2/2 (2.4a) 

Their orthogonality properties are 

(2 )1J 2 
fduemr162162 e t=  [l! (rn/3)t] -1 (2.4b) 

(the slightly awkward normalization is chosen to remain consistent with 
Ref. 9, from which we shall use several explicit results). The set of functions 
{ak(x, t)} will be our set of fundamental mesoscopic variables; they have 
time reversal parity r/k -- ( - 1 )k. By expressing the first two terms in (2.1) in 
terms of the raising and lowering operators for the Ok(u), one deduces from 
(2.1) the set of coupled evolution equations 

Oa~(x, t) 
t )+kD~ak l(X, t)+----~Oxak+l(x, t) (2.5) 

Ot 

where we used the abbreviations 

0.~ =- O/Ox, Dx = ~x + fiqS'(x) 

The set (2.5) can be written symbolically as 

(2.6) 

a(x, t) = M.  a(x, t) (2.7) 

where a is a vector consisting of functions and M is a matrix with elements 
that are operators with respect to x. 

To bring (2.7) into the canonical form for testing Onsager symmetry, 
the variables ak(x, t) must be eliminated in favor of the thermodynamic 
force fields, i.e., contributions linear in the a~(x) to the functional 
derivatives of the thermodynamic potential with respect to the ak(x). Since 
c~ describes a coupling to a heat bath, the relevant thermodynamic poten- 
tial is the free energy. The free energy functional is given by 

1 
[ P(u, x, t)] =-~ f du f dx P(u, x, t)ln[P(u, x, t)/Poq(U, x)] (2.8) 

If one now substitutes [ 1 2  ] 
Peq(U, x) = aoo(X ) Oo(u) = No exp - ~ rnflu - f l~(x) (2.9) 

822/49/1-2-22 
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with No a suitable normalization constant, inserts the expansion (2.3), and 
exploits the orthogonality relations (2.4), one obtains, up to terms 
quadratic in the a~(x, t), 

f f i~[P(u, x, t)] = ~ c ~  dxaool(x)[ak(x, 0]  2 (2.10) 

The thermodynamic force fields are therefore given by 

fk(x, t)= fl lo~kaool(X) ak(x, t) (2.11) 

A straightforward analogy with the procedures outlined in Refs. 3 and 
4 (cf. also Ref. 10) would require us to rewrite (2.7) as 

0 
c3t a(x, t) = M- a(x, t) = L. f(x, t) (2.12) 

The Onsager-Casimir symmetry requirement on [_ would then entail the 
condition 

/ ~ =  (--1)k+tL~k (2.13) 

for the matrix elements of ~_, where the dagger denotes the Hermitian 
adjoint. The calculation of the /:hi from (2.5), (2.11), and (2.12), and the 
subsequent verification of (2.13), is straightforward. However, one may 
save some labor by writing, instead of (2.12), 

M" a(x, t) = L- aoo(X ) f(x, t) (2.14) 

The requirement (2.13) is readily shown to be equivalent to 

Lk l  "= ( -1  ~k + i t  + (2.15) 
! ~ I k  

where the superscript plus sign denotes the Hermitian adjoint with respect 
to the weighted scalar product 

( f  g)  = f dx a~o~(X) f ( x )  g(x) (2.16) 

The matrix elements L,t follow directly from (2.5): 

L ~ l = - f l  6kt+ k D ~ 6 k t + l q - - O x g k . r  
\ak ~k 1 " mfl~k+ 1 

from which one obtains, by substitution of (2.4), 

Lk~= -fiE~kk! (mfl)k6kt+k! (raft) k ~Dx6k,~+l+(k+ 1)! (raft) k#x6~J 1] 
(2.18) 
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The validity of the Onsager Casimir symmetry relations now immediately 
follows from the fact that D x and - ~ x  are a pair of Hermitian conjugates 
with respect to the scalar product (2.16). 

The derivation given here for the Klein-Kramers equation naay be 
generalized to a more general ~. If one uses the expansion (2.3), then the 
first term in (2.5) becomes slightly more complicated; it now contains a 
linear combination of az(x, t) with constant coefficients. The properties 
(2.13) and (2.15) can still be proved; one has to rely on the fact that the 
extended detailed balance property of cg is equivalent (~4) to the required 
Hermiticity properties with respect to the scalar product 

( f ,  g )  = f du e m~"2/2 f (u )  g(u) (2.19) 

Finally, we would point out that the lowest order free energy 
functional (2.10) can also be obtained by expanding the expression 

f l ~ [ P ( u , x , t ) ] = f d u f d x P ~ q ' ( U , x ) [ P ( u , x , t ) ]  2 (2.20) 

known to be a Liapunov function for a general Fokker-Planck 
equation, ~14~ and hence also for the special case of the Klein-Kramers 
equation. 

3. THE PROBLEM:  V I O L A T I O N S  OF O N S A G E R  S Y M M E T R Y  
FOR THE C O R R E C T E D  S M O L U C H O W S K I  E Q U A T I O N  

In this section we consider the case where the friction ~ is large, or, 
more precisely, where the potential varies slowly on the scale of the velocity 
persistence length l =  ~/-l(mfl) 1/2. To avoid manifestly bad convergence of 
various expansions (which are in general merely asymptotic ones in any 
case), it is prudent to assume that the initial distribution P(u, x, 0) is also 
smooth on that scale. Then, as is argued more fully in Refs. 7 and 8, the 
solution P(u,x,  t) will, on a time scale 7 ~, approach a normal (or 
Chapman-Enskog type) solution of the form 

PE~ x, t) = [aoo(X ) + Co(X, t)] ~bo(U ) + (9(7 -1) (3.1) 

The correction terms contain only ~bn(u ) with n > 0; the coefficients of these 
~b.(u) are completely determined by Co(X, t); they can be calculated via a 
perturbation algorithm as power series in 7-1. As a solubility condition for 
this perturbation scheme there emerges the equation of motion that the 
function Co(X , t) must obey; we denote this equation by 

-~ Co(X, t) = JgCo(X, t) (3.2) 
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Successive contributions to the operator ~ are found in successive orders 
in perturbation theory. [The function co(x, t) differs from the one used in 
Ref. 7 by the term aoo(X), but this is immaterial, since all terms in 
annihilate aoo(X)]. 

To lowest order one obtains for ~ the Smoluchowski operator 

j { l l / _  1 0x(c3x+/3qs, ) 1 
m[37 = ~fl-~ cqxD x (3.3) 

This operator is clearly Hermitian with respect to the scalar product (2.16). 
This Hermiticity is tantamount to Onsager symmetry if one defines the 
thermodynamic forces as functional derivatives of the coarse-grained free 
energy functional given by 

/3@(~ t)] = dx (co+aoo) ln 1 +~oo 

~-- dxaool(X)[Co(X, t)] 2 (3.4) 
2 

where the second line is obtained by neglecting terms of third and higher 
order in co. 

When terms up to order 7 5  are included in J one obtains/7) 

1 ~"-~  1 
~ 1 5 ~ -  m~-~70x { 1 § ~7572 (mflyz)z[~flcIoli~')+2132(cI)")2 

1 2 . . . .  3 ,,, 7 )  7) 
2/~qSq5 +~flq5 D ~ J } D x + ( 9 ( 7  (3.5) 

The last term clearly violates Hermiticity, as well as Onsager symmetry 
relative to the coarse-grained free energy (3.4). However, it was rather 
inconsistent to include higher corrections to dr', but not the contributions 
of the correction terms in the expression (3.1) for pEO? to the free energy 
functional. The explicit form of pEOl up to order 7 -5 is given in Eq. (3.9) of 
Ref. 7. When one omits terms that do not contribute to Z at order 7 - 4  

(and corrects a misprint) one obtains 

Pl~ x, t) = [aoo(X) + Co(X, t)] ~o(U) -- + ~ crp" Dxco(x ' t) q)l(u) 

1 
+-~ D~co(x, t) ~b2(u) + ... (3.6) 
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By substitution into (2.10) and a few integrations by part, one obtains for 
the free energy up to order 7 -~ 

1 f dx aool(x) Co(X , t) ~Co(X, t) /3~ECo(X, O] =2 (3.7) 

where the operator N is given by 

, , Q  ) ~= 1 m~O~D~+. . (mf172) 2 82D2--2flSxq~"D~ (3.8) 

[we assume qS(x) diverges fast enough at infinity so that boundary terms 
do not contribute]. As expected, N is Hermitian and positive definite with 
respect to the weighted scalar product (2.16). 

The thermodynamic force field fo(x ,  t) conjugate to co(x, t) is given by 

fo(x,  t) = fl 'agol(X) fqCo(X, t) (3.9) 

If one now recasts (3.2) into the form 

0 
9t Co(X, t ) =  s fo(x ,  t) (3.10) 

in complete analogy with (2.14), and substitutes (3.9) as well as the 
expressions for J/g and f#, one obtains for the operator 5e 

[ ' ' (i  - o  1 c~ l + - - c ? , : D x 4  2 2 
S = rn 7 . mfl72 . ( Z ] ~ ) 2 )  2 C?xDx + flOx r x 

~_3[~( iv  , 3 )] 
2 ~ -~/72r D~+r 6) (3.11) 

The last term in large parentheses violates the Hermiticity condition 
equivalent to Onsager symmetry. The inclusion of correction terms in the 
free energy therefore does not remedy the lack of symmetry already 
apparent in the expression (3.5) for ~ ' ;  it merely changes the coefficient of 
the troublesome term (and adds a few Hermitian terms as well). 

Before proceeding toward a solution of the questions raised by this 
symmetry violation, we emphasize that the transition from the lowest order 
Chapman-Enskog result to the higher order approximations did not 
involve the introduction of additional variables or additional pairs of forces 
and fluxes. Thus our approach is fundamentally different in its philosophy 
from schemes known as "extended thermodynamics," which are widely 
criticized as unsystematic. ~ As soon as the Chapman-Enskog regime sets 
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in, the an(x, t) with n > 0  in (2.3) cease to be independent variables; they 
adiabatically adjust themselves to (or, in the parlance of Haken, (16/ are 
enslaved by) the macroscopic field Co(X, t). 

4. A R E M E D Y :  AN A L T E R N A T I V E  D E F I N I T I O N  OF T H E  
T H E R M O D Y N A M I C  F O R C E S  

In complete analogy with the recipe given in Ref. 9, we shall now 
present a modification of the Onsager-Casimir symmetry relations that 
enables them to survive the adiabatic elimination of fast variables. For this 
purpose we take as the fundamental thermodynamic quantity, instead of 
the functional ~ ,  the associated "thermodynamic Lagrangian" ~ ,  defined 
as the difference between the contributions of the odd variables to the 
quadratic approximation of ~ and those of the even variables. For our 
specific example one obtains instead of (2.10) 

1 )~f f l~'[P(u,  x, t)] = - ~ k ( - - 1  dxaool(X)[ak(x, 0 ]  2 (4.1) 
k 

Accordingly, we define the modified thermodynamic forces fk(x,  t) as the 
functional derivatives of 9 with respect to the a~(x, t). For the Klein- 
Kramers system these are 

)?~(x, t ) = ( - 1 ) k + ' f i  l~kaool(X) ak(x, t )= ( - -1 )~+l f k ( x ,  t) (4.2) 

Next we define the new Onsager matrix operator [_ via 

M. a(x, t) = L- aoo(X) t(x, t) (4.3) 

A comparison with (2.14) shows that the matrix elements of i" and / are 
related, for our simple case, by 

[,k~= (--1) '+ 1Lkz (4.4) 

Using (2.15), one obtains as the modified Onsager-Casimir conditions 

Lkl = ( -- 1 )/+1Lkl = ( -- 1 )k + 1Ll ~ = LI~ (4.5) 

Thus, the modified Onsager matrix operator is always Hermitian, even 
when some of the variables are odd under time reversal. This conclusion, 
unlike (4.1)-(4.4), does not depend on the "diagonal" form (2.10) of the 
free energy, as can be seen by retracing the analogous derivation in Ref. 9. 
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By replacing the ak(x, t) in (4.1) by the coefficient functions in the 
Chapman-Enskog solution (3.6) one obtains for the thermodynamic 
Lagrangian of this normal solution 

1 
flJ&[Co(X, t)] = ~ f  dx a~ol(X) Co(X , t) ~Co(X, t) (4.6) 

with, up to fourth order in },-~, 

~ =  - 1 + - ~ - ~ O ~ D ~ +  #~D~+2flOxqS"Dx (4.7) 
" ( m f l ~ 2 )  2 

If one now writes the equation of motion (3.2) in the form analogous to 
(3.10), 

0 
& Co(X, t)=J/gCo(X, t )=  fl ls , t )=  Zi'aoo(X)fo(X , t) (4.8) 

and substitutes the approximations (3.5) and (4.7) for d/' and ~, one 
obtains 

s - 1 c~ {1 1 
- -m)--7 - - -m--~  (axDx-2f iqS ' )+  - -  l [ ~ O x D x _ 5 f l c 3 x ~ D x Z  2 ,, 

(mfi72) 2 

2 (4.9) 

Thus, ~ ,  unlike 50, is Hermitian with respect to (2.16). 
The operator f~ that relates the modified thermodynamic force field 

f0(x, t) to the macroscopic field Co(X, t) also plays an important role in the 
analysis of the spectral properties of the evolution operator d/'. Suppose 
c;.(x) is an eigenfunction of ~ with eigenvalue m;: 

Jdc ~(x) = f l -  l ~@c.~(x ) = m,t c x(x) (4.10) 

By a slight adaptation of the proof in Ref. 10 we shall now show that 

f ; (x)  = a~o~(X) f#c;.(x) (4.11) 

is a left eigenfunction of J/t (i.e., an eigenfunction of ./r with the same 
eigenvalue. From the relations 

Oxaoof= aoo(Ox-- f i ~ ' ) f =  --aooDxf,* " D xaoof  = aoo•xf = - a o o ~  f 
(4.12) 
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which follow immediately from a o o ( X ) ~  e x p [ -  3~b(x)], one readily derives 
an interesting connection between Hermiticity properties relative to 
weighted and unweighted scalar products. For any operator sr with 
sr = sr + one finds (by substituting f =  aoo~g) 

~r  g ( x )  = a~o~(X) seCg(x) (4.13) 

Since fie = ~ + and f~ = ~ +, one therefore has 

J g  * a ~ol f~ c ; = ~ l f~ t fC~ * a ffol f# c ~ = fl - l a ~ol ~ C~ f~ c ~ = m z a ~ol f~ c ;~ (4.14) 

or, inserting the definition (4.11), 

J / f  f ; . ( x )  = m x f ~ ( x )  (4.15) 

which proves the above assertion. The connection between c;. and f;. leads 
to the orthogonality relation 

f dxc Xx)L(x)=f dXaoo'(X)C (X) e.(x)=O ( m ; # m ~ , )  (4.16) 

for the eigenfunctions c;. of the corrected Smoluchowski operator ~ .  
The operator ~ in (4.16) is Hermitian with respect to the weighted 

scalar product, and approaches - J  for large ~. This implies that the 
operator (_~)~/2 can be constructed at least as a formal power series in 
7-1. We now consider the operator 

~ _ _ f l - l a 0 0 1 / 2  ( _ ~ ) 1 / 2  ~ (  ( t~]l /2  .,71/2 
- -  ~ ) ~ 0 0  

(4.17) 

One readily checks that 

~afoV2 (-~)1/2c). = aool/2( - - ~ ) 1 / 2 ~ c ; .  = m ; a ( o l / 2 ( - ~ ) l / 2 c ; .  (4.18) 

Hence, .~ and J~ have the same eigenvalues. On the other hand, .~ has the 
form ,,-1/2 ~r with d = ~  + This implies that ~ is Hermitian: from wOO ~ 0 0  

(4.13) one deduces 

a-1/2~,~1/2  = aool/2daooao01/2 = ml/2 e.fftrt--1/2 __ (m--l/2 c-ffnl/2]t (4.19) 
O0 ~+ ~00  ~00  ~ ~00  - -  ~ 0 0  ~ 0 0  ] 

Thus, all eigenvalues of Jg are also eigenvalues of a Hermitian operator, 
hence they must all be real (and, in view of the existence of a Liapunov 
function, all negative but for the simple eigenvalue zero). 

This conclusion is, however, far from rigorous. Our expressions for Jr 
~, and ~ are purely formal power series in 7-1, and not much is known 
about their convergence properties (probably the series are asymptotic 
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ones, except in very simple cases). On the other hand, the eigenvalues and 
eigenfunctions of the Smoluchowski operator jg(l~, given by (3.3), are 
known to be real, since j/g(1) can be transformed into a Schr6dinger 
operator/17/Since all correction terms in de' are real operators, this implies 
that all terms in the perturbation expansion for the eigenvalues and eigen- 
functions of J / ,  with d g -  d//(1) taken as the perturbation, are real as well. 
Also, analytical (7~ and numerical (18) calculations of the eigenvalues of the 
Klein-Kramers equation for specific potentials as functions of 7 -1 show 
that each of them stays real for a range of values of ?-1, until they intersect 
another eigenvalue at a branch point, from which then typically two com- 
plex eigenvalues emerge. The analogy with the results in Ref. 11 leads one 
to expect that at such a branch point the expectation value of the ther- 
modynamic Lagrangian in the eigenfunctions involved goes to zero; this 
implies that one is at or beyond the radius of convergence of the power 
series expression for ( - f#)1/2 c;. 

5. CONCLUDING R E M A R K S  

The deviations from Onsager Casimir symmetry considered in this 
paper, especially in Section 3, are most probably too small to be of any 
practical importance. In addition, if a discrepancy were to be measured, it 
would be very difficult to ascertain whether it corresponds to correction 
terms arising during the transition from a microscopic to a mesoscopic 
description or from the corrections arising during the transition from the 
mesoscopic to the macroscopic level, which were determined in this paper. 3 
However, the Onsager-Casimir relations have an additional importance: 
they provide insight into the spectral properties of macroscopic (and 
mesoscopic) evolution operators, and they can serve as useful checks on 
practical calculations. It is gratifying that the modified Onsager relations 
introduced in Section 4 perform these secondary functions just as well as 
the original Onsager-Casimir relations. 

The modified definition of the thermodynamic forces has some advan- 
tages in addition to enabling the Onsager-Casimir relations to survive the 
adiabatic elimination of some of the variables. The most important one is 
that the time evolution of the new thermodynamic force fields is governed 
by the Hermitian adjoint of the evolution operator for the fundamental 
variables: 

da/dt= M "a<=.aCf/dt= M* "t (5.1) 

s A calculation of correction terms arising from the first transition could be carried out for the 
case of a Brownian particle in the framework of the theory given in Ref. 19. 
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where M may be a matrix, an operator, or an operator matrix. A proof is 
readily constructed by adaptation of the one in Ref. 10 or the one in this 
paper leading to (4.15). 

A related advantage of the modified definition is caused by the 
diagonality of the mesoscopic functional ~ [ P ]  with respect to the spectral 
decomposition of M (see Ref. 10). Thus, for a mesoscopic solution 

a(x, t) = acE(X, t) + a,(x, t) (5.2) 

with a Chapman-Enskog component aCE and a fast transient a,, there is a 
corresponding decomposition of the modified thermodynamic force 

t(x, t )= tcE(X, t)+ tt(x, t) (5.3) 

with a slow part {cE depending only on ace and a fast part {, depending 
only on a,. This means that the two parts of a obey separate equations of 
the typical Onsager form, in particular 

0 
at acE(X, t) = [-aoo(X) icE(X, t) (5.4) 

This is a closed equation for ace , from which the Hermiticity of the 
reduced Onsager operator 2 of Section 4 can be proved using the techni- 
ques of Ref. 9. On the other hand, the functional Y [ P ]  is not diagonal in 
the above sense. In a decomposition of f analogous to (5.3) the slow com- 
ponent of f also depends on a,, and the fast one on acE. The mesoseopic 
operator L, unlike i', couples Chapman Enskog and transient parts of the 
solution. 

A final, rather minor, advantage of the redefinition of the ther- 
modynamic forces is that it allows one to extend the original Onsager 
formulation of the symmetry relations (for even variables only) to the 
Casimir case, where some of the variables are odd, without introducing 
extra sign factors. 

The spectral equivalence proved in Section 4 between the macroscopic 
evolution operator d /  and the Hermitian operators ~ answers a question 
raised in a recent paper by Gouyet. (12) This author succeeded in transform- 
ing low-order approximations to ~ ,  and analogues for the faster decaying 
solutions of the Klein-Kramers equation, into Hermitian operators via a 
transformation of the type 

Co(X, t) --* g (x )  Co(X, t), Jr  --* gJCdg -1 (5.5) 

This transformation is clearly not general enough to perform its assigned 
task up to arbitrary order in 7 -1. When applied to the operator Jd "(5) in 
(3.5) it can never change the order of the highest differential operator (nor 
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its coefficient) and thus remove the differential operator of third order, 
which precludes Hermiticity. For such a task one needs to include a dif- 
ferential operator in the transformation of Co(X, t). On the other hand, our 
procedure can be applied equally well to the reduced evolution operators 
for more rapidly decaying solutions of the Klein-Kramers equation. The 
essential requirement is that all variables in the reduced description have 
the same time reversal parity, to allow the quantity corresponding to 
(_+9) 1/2 to be well-defined. 

For equations such as the linearized Boltzmann equation one has 
more than one single hydrodynamic field Co(X, t). Thus, the operator Jr 
becomes an operator matrix. Successive approximations to it represent the 
Euler, Navier-Stokes, Burnett, and super-Burnett equations, and Onsager- 
type relations derived by the methods outlined in this paper express them- 
selves as constraints on the form of these equations and on the coefficients 
appearing in them. This to us appears to be the "royal road" toward 
deriving Onsager relations (or deviations from them) for Burnett and 
super-Burnett coefficients. Another approach might be to expand the 
hydrodynamic fields in terms of a complete set of functions of x (or r) and 
to adopt the expansion coefficients as macroscopic variables for the system. 
This is the procedure that leads to the conventional Onsager relations for 
continuous systems where all hydrodynamic fields are linear functions of 
the space variables, and it appears to be the approach chosen by Ku~er in 
a recent paper. (~3~ He restricts himself to fields that depend polynomially 
on the space coordinates; in that case the coefficients of the polynomials 
are related rather simply to the values of the expansion coefficients in the 
analog of (3.6) in a given point in space, which were chosen by Ku~er as 
the fundamental fluxes. It is not clear, however, whether such a relation is 
generally valid, and, perhaps more importantly, under which conditions a 
truncation of the set of equations for the expansion coefficients of the 
hydrodynamic fields can be justified. In this connection we wish to stress 
once more that the number of independent variables is fixed by the level of 
description chosen for the system. It may be further restricted by the boun- 
dary conditions imposed (symmetry, restriction to stationary solutions of 
the hydrodynamic equations). It does not depend on the order up to which 
the Chapman-Enskog perturbation scheme is carried through. 

In view of the partial integrations involved in the definition of N and 
and the concomitant neglect of boundary terms in the free energy, our 
treatment needs some extension before it can be applied to open systems, in 
particular when they are not large compared to the velocity persistence 
length (in the kinetic theory of gases the mean free path, respectively). In 
any case, in such systems the Chapman-Enskog approximation is expected 
to break down in the boundary layers (2~ and a more detailed treatment is 
called for. 
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Fina l ly ,  we stress once  m o r e  tha t  o u r  t r e a tmen t ,  t h o u g h  for ease of 
expos i t i on  res t r ic ted m a i n l y  to the  K l e i n - K r a m e r s  case, s h o u l d  be exten-  

dab le  to a n y  sys tem descr ibed  o n  the mesoscop ic  level by  a l inear  e q u a t i o n  

sat isfying a n  ex tended  de ta i led  b a l a n c e  cond i t i on .  After  all, it is to a large 
ex ten t  mere ly  a t r a n s c r i p t i o n  of  the t r e a t m e n t  deve loped  in  Ref. 9 for 

sys tems wi th  a f inite n u m b e r  of  t h e r m o d y n a m i c  coord ina tes .  O n c e  the 

a p p r o p r i a t e  t h e r m o d y n a m i c  var iab les  for each level of desc r ip t ion  of a 
phys ica l  sys tem are ident if ied,  the r equ i red  a d a p t a t i o n  of  the fo rm a l i sm  
becomes  r a the r  s t r a igh t fo rward .  
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